首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   1篇
化学   92篇
力学   2篇
数学   5篇
物理学   31篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   3篇
  2015年   10篇
  2014年   5篇
  2013年   8篇
  2012年   7篇
  2011年   17篇
  2010年   4篇
  2009年   3篇
  2008年   11篇
  2007年   9篇
  2006年   3篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
101.
Anti-ulcer activities of xyloccensin-E and xyloccensin-I were investigated in various ulcer models in Sprague-Dawley rats. The effects and the mechanism of action of both compounds for anti-secretory and cytoprotective activities were also studied. Both these active molecules improved the depleted levels of mucin and consequently inhibited the formation of erosions in a pyloric ligated ulcer model. Furthermore, xyloccensin-E and xyloccensin-I inhibited H+K+-ATPase activity in vitro confirming their anti-secretory activity. In conclusion, xyloccensin-E and xyloccensin-I were found to possess anti-ulcerogenic activity which might be due to their anti-secretory activity and subsequent strengthening of the defensive mechanism.  相似文献   
102.
Swift heavy ion (SHI) beam induced irradiation is an established technique for investigating structural modifications in thin films depending on the S e sensitivity of material. Intermixing due to 120 MeV Au ion irradiation at different fluences from 1012 to 1014 ions/cm2 has been reported as a function of ion fluence in a-Si/Zr/a-Si thin films on Si substrate. The samples are characterized before (pristine) and after irradiation using Grazing Incident X-ray Diffraction (GIXRD) and Rutherford Backscattering Spectroscopy (RBS), which confirm the formation of ZrSi at thin film interface. It is suggested that mixing is mainly due to electronic energy loss since the energy transferred from high energy ions seems to create a transient molten zone along the ion track. It is found that the interface mixing increases linearly with the increase in ion fluence. The mixing effect explained in the framework of Thermal spike model. The irradiation effect on the surface roughness of the system is measured using Atomic Force Microscopy (AFM) technique. The current conduction mechanism and Schottky barrier height are also calculated by taking I–V curves across the Metal/Si junction.  相似文献   
103.
Gross gamma radiation survey was carried out using Nal(Tl) scintillator based portable gamma ray spectrometer (PGRS) around areas of Gaonri, Dholera, Pachnota and Meghot in Mahendragarh district, Haryana. Geologically the area forms part of north Delhi fold belt comprising calc-silicate, quartz biotite schist, impure marble, quartzite and pegmatite rocks. Equivalent uranium (eU3O8) concentration in ppm was estimated in situ on a regular grid pattern of 500 m (E-W) × 1000 m (N-S) and grab samples were collected at grid locations for analyzing in the laboratory for estimating the contents of eU3Os Raeq, ThO2 and %K. A comparison with the laboratory analysed grab samples for eU308 data and in situ radiation measurements shows a good match of the two sets of data. The in situ measurements indicate higher concentration of eU3O8 in Chapra Bibipur in northeastern most corners, Maghot area in central part, Gaonri in western part and Pachnota in southwestern part of the study area. As index to uranium favorability, U(Raeq)-Th contour map (prepared using Surfer software with Krieging interpolation method for this grid size) based on the data on grab samples was generated which show three major clusters of relatively high U-Th ratio. The blocks delineated are enriched in sodic mineral albite which support albite hosted uranium mineralization potential in metamorphic rocks in Haryana.   相似文献   
104.
Chiral aspects of benzimidazoles have been over-shadowed for a long time due to the large number of reports on benzimidazoles in the medical field in numerous categories of therapeutic agents. The vigorous research activity in chiral applications of benzimidazole derivatives started after bifunctional benzimidazoles made their appearance especially in the last 2–3 decades. Thus, chiral benzimidazoles form a comparatively young branch of chiral chemistry. The presence of pyridine and pyrrole type of nitrogens along with the fused benzene ring confer on this class of molecules, special properties including useful nucleophilicity, hydrogen bonding ability and a rigid backbone, all of which play decisive roles in proven chiral applications. The present review aims to cover the synthetic routes to access chiral benzimidazoles and their applications in a plethora of chiral fields including enantioselective organocatalysis, metal-based catalysis, asymmetric transformations involving benzimidazole-N-heterocyclic carbenes, kinetic resolution, benzimidazole-based macrocyclic hosts in chiral supramolecular chemistry and other miscellaneous chiral applications.  相似文献   
105.
106.
107.
Three orthogonal cascade C H functionalization processes are described, based on ruthenium‐catalyzed C H alkenylation. 1‐Indanones, indeno indenes, and indeno furanones were accessed through cascade pathways by using arylacetophenones as substrates under conditions of catalytic [{Ru(p‐cymene)Cl2}2] and stoichiometric Cu(OAc)2. Each transformation uses C H functionalization methods to form C C bonds sequentially, with the indeno furanone synthesis featuring a C O bond formation as the terminating step. This work demonstrates the power of ruthenium‐catalyzed alkenylation as a platform reaction to develop more complex transformations, with multiple C H functionalization steps taking place in a single operation to access novel carbocyclic structures.  相似文献   
108.
Thermal cracking of waste cooking oil (WCO) for production of liquid fuel has gained special interest due to the growing demand of renewable fuel, depleting fossil fuel reserves and environmental issues. In the present work, thermal cracking of WCO to produce liquid hydrocarbon fuels without any preprocessing has been studied. Moreover, non-isothermal kinetics of WCO using thermogravimetric analysis (TGA) has been studied under an inert atmosphere at various heating rates. According to TGA result, active thermal decomposition of WCO was found to be between 318 and 500 °C. Furthermore, the temperature at which the maximum mass loss rate attained was shifted to higher values as the heating rates increased from 10 to 50 °C min?1 and the values were found to be approximately similar to that of R 50. Besides, model-free iso-conversion kinetic methods such as Friedman (FM), Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) were used to determine the activation energies of WCO degradation. The average activation energy for the thermal degradation of WCO was found to be 243.7, 211.23 and 222 kJ mol?1 for FM, KAS and FWO kinetic methods, respectively. Additionally, the cracking of WCO was studied in a semi-batch reactor under an inert atmosphere and the influences of cracking temperature, time and heating rates on product distribution were investigated. From the reaction, an optimum yield of 72 mass% was obtained at a temperature of 475 °C, time of 180 min and a heating rate of 10 °C min?1. The physicochemical properties studied were in accordance with ASTM standards.  相似文献   
109.
Stabilization and utilization of poultry waste demand efficient biodegradation either by mixture of enzymes or by microbial system that can produce different types of protein-hydrolyzing enzymes. For utilization of this keratinous biomass, in the present study, genome was sequenced and annotated for a bacterium having multiple enzymatic options for hydrolysis of different soluble and insoluble protein fractions of poultry waste. Among the soluble protein substrates, optimum production of enzyme and soluble protein was observed in case of casein, whereas among the insoluble protein substrates, maximum production of enzyme was achieved when broken nails were used. Conditions for enhanced enzyme activity with concurrent degradation of keratin-rich poultry feather waste to protein-rich hydrolysate were optimized for different growth parameters. The bacterium grew well and highest protease production occurred in 144 h at mesophilic temperature (30 °C) and alkaline condition (pH 8–10) with enzyme activities of 134 and 168 U/mL, respectively.  相似文献   
110.
This study investigates the formation of linear polymer grafts using thiol‐acrylate conjugate addition reactions on nanoparticle surfaces. Silica nanoparticles were first modified with an amine functionality, followed by the attachment of a photocleavable acrylate. Dithiol‐diacrylate films were attached to the particles through the surface acrylate groups at various stoichiometric ratios of thiol to acrylate by conducting amine‐catalyzed conjugate addition polymerizations. The particles were then exposed to UV light to release the grafted polymer by photocleavage. The cleaved, grafted polymers were analyzed using infrared spectroscopy and gel permeation chromatography and compared to polymers formed in the bulk, which remained unattached to the particles. The measured number and weight average molecular weights were similar for both polymer types within experimental error and increased from 2000 to 5000 g/mol and 4000 to 10,000 g/mol, respectively, as the ratio of limiting to excess functionality increased from 0.8 to 1. Both number and weight average molecular weights followed the trend of step growth polymers with the highest molecular weight achieved for stoichiometric monomeric mixtures. Surface coverage of the nanoparticles was estimated using the molecular weight and thermogravimetric data and was found to be uniform (~0.15 chains/nm2) irrespective of the stoichiometry of the reacting monomers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6896–6906, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号